Search results for "Sphingobium chlorophenolicum"

showing 3 items of 3 documents

Subcellular localization of pentachlorophenol 4-monooxygenase in Sphingobium chlorophenolicum ATCC 39723.

2002

Abstract We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2–4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and…

CytoplasmBiophysicsBiologyProtein Sorting SignalsBiochemistryMixed Function Oxygenaseschemistry.chemical_compoundBiosynthesisAntibody SpecificityInner membraneMolecular BiologySphingobium chlorophenolicumAlphaproteobacteriachemistry.chemical_classificationAntibodies MonoclonalCell BiologyPeriplasmic spacebiology.organism_classificationSubcellular localizationMolecular biologyImmunohistochemistryPentachlorophenolKineticsEnzymechemistryBiochemistryCytoplasmPeriplasmBiochemical and biophysical research communications
researchProduct

Isolation and Characterization of Novosphingobium sp. Strain MT1, a Dominant Polychlorophenol-Degrading Strain in a Groundwater Bioremediation System

2002

ABSTRACT A high-rate fluidized-bed bioreactor has been treating polychlorophenol-contaminated groundwater in southern Finland at 5 to 8°C for over 6 years. We examined the microbial diversity of the bioreactor using three 16S ribosomal DNA (rDNA)-based methods: denaturing gradient gel electrophoresis, length heterogeneity-PCR analysis, and restriction fragment length polymorphism analysis. The molecular study revealed that the process was dependent on a stable bacterial community with low species diversity. The dominant organism, Novosphingobium sp. strain MT1, was isolated and characterized. Novosphingobium sp. strain MT1 degraded the main contaminants of the groundwater, 2,4,6-trichloroph…

Molecular Sequence DataFresh WaterDNA RibosomalPolymerase Chain ReactionApplied Microbiology and BiotechnologyMixed Function OxygenasesMicrobiologyBioreactorsBioremediationRNA Ribosomal 16SEnvironmental Microbiology and BiodegradationRibosomal DNAAlphaproteobacteriaSphingobium chlorophenolicumElectrophoresis Agar GelGeneticsEcologyStrain (chemistry)biologyAlphaproteobacteriaGenes rRNASequence Analysis DNA16S ribosomal RNAbiology.organism_classificationBiodegradation EnvironmentalRestriction fragment length polymorphismPolymorphism Restriction Fragment LengthWater Pollutants ChemicalTemperature gradient gel electrophoresisChlorophenolsFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Evidence for Natural Horizontal Transfer of the pcpB Gene in the Evolution of Polychlorophenol-Degrading Sphingomonads

2002

ABSTRACT The chlorophenol degradation pathway in Sphingobium chlorophenolicum is initiated by the pcpB gene product, pentachlorophenol-4-monooxygenase. The distribution of the gene was studied in a phylogenetically diverse group of polychlorophenol-degrading bacteria isolated from contaminated groundwater in Kärkölä, Finland. All the sphingomonads isolated were shown to share pcpB gene homologs with 98.9 to 100% sequence identity. The gene product was expressed when the strains were induced by 2,3,4,6-tetrachlorophenol. A comparative analysis of the 16S rDNA and pcpB gene trees suggested that a recent horizontal transfer of the pcpB gene was involved in the evolution of the catabolic pat…

Molecular Sequence Datamedicine.disease_causeSphingomonasApplied Microbiology and BiotechnologyMixed Function OxygenasesGene product03 medical and health sciencesTransduction GeneticRNA Ribosomal 16SmedicineEnvironmental Microbiology and BiodegradationAmino Acid SequenceAlleleGeneEscherichia coli030304 developmental biologySphingobium chlorophenolicumGenetics0303 health sciencesSequence Homology Amino AcidEcologybiology030306 microbiologybiology.organism_classification16S ribosomal RNASphingomonasBiological EvolutionHorizontal gene transferChlorophenolsFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct